Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 31(23): 37426-37436, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-38017871

RESUMO

We demonstrate the fabrication of over-coupled long-period fiber gratings (LPFGs) in the 1.55-µm and 2-µm wavebands enabling broadband linearly polarized LP11 mode conversion using a CO2 laser. The birefringence of the fiber is caused by on one side laser exposure and increases with the increase of refractive index modulation depth, which realizes the conversion of linearly polarized modes. The mode conversion bandwidth can be significantly increased by using the over-coupled LPFG. The 10-dB bandwidth of the LPFGs with |κ|L values of π/2, 3π/2, and 5π/2 are 33.04, 80.84, and 114.08 nm at 1.55 µm waveband, respectively. The maximum bandwidth of the over-coupled LPFG is 3.79 times higher than that of conventional LPFG. The operating wavelength of the mode converter can be extended to 2.0 µm wavebands and the maximum 10-dB bandwidth reaches 161.32 nm. The proposed broadband linearly polarized mode converters could have potential application in the fields of mode division multiplexing systems, fiber laser systems.

2.
Opt Express ; 31(23): 39250-39260, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-38018008

RESUMO

The Mamyshev oscillator (MO) is a promising platform to generate high-peak-power pulse with environmentally stable operation. However, rare efforts have been dedicated to unveil the dynamics from seed signal to oscillator pulse, particularly for the multi-pulse operation. Herein, we investigate the buildup dynamics of the oscillator pulse from the seed signal in a fiber MO. It is revealed that the gain competition among the successively injected seed pulses leads to higher pump power that is required to ignite the MO, hence resulting in the higher optical gain that supports buildup of multiple oscillator pulses. The multiple oscillator pulses are identified to be evolved from the multiple seed pulses. Moreover, the dispersive Fourier transform (DFT) technique is used to reveals the real-time spectral dynamics during the starting process. As a proof-of-concept demonstration, a highly intensity-modulated pulse bunch was employed as the seed signal to reduce the gain competition effect and avoid the multi-pulse starting operation. The experimental results are verified by numerical simulations. These findings would give new insights into the pulse dynamics in MO, which will be meaningful to the communities interested in ultrafast laser technologies and nonlinear optics.

3.
Opt Lett ; 48(22): 5875-5878, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37966741

RESUMO

We demonstrate the generation of solitons and bound-state solitons in a passively mode-locked fiber laser based on the nonlinear polarization rotation effect by polarization-dependent helical grating. The CO2-laser-inscribed grating has a high polarization-dependent loss of 24.4 dB at 1558.4 nm, which has facilitated the achievement of stable mode locking. The soliton laser could generate 548.9 fs pulses at 1560.59 nm with a spectrum bandwidth of 5.45 nm and a signal-to-noise ratio of 75.2 dB. Through adjustment of the polarization controller and pump power, a bound-state soliton mode-locked pulse with a spectral modulation period of 3.11 nm was achieved and the temporal interval between the two solitons was 2.19 ps. Furthermore, its repetition rate can be easily manipulated by varying the pump power. The results indicated that the polarization-dependent helical grating is an excellent polarizer that could be applied in an ultrafast fiber laser.

4.
Opt Lett ; 48(20): 5395-5398, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37831876

RESUMO

We show that an optimum mode-locking state with low relative intensity noise (RIN) can be identified by continuous broadening of an optical spectrum in a stretched-pulse fiber laser based on nonlinear polarization rotation (NPR). Under the premise of keeping the overall spectral shape unchanged, either gradually increasing the pump power or unidirectionally adjusting the polarization controller (PC) can effectively reduce RIN as the optical spectral bandwidth broadens. The optimized intensity noise performance of the laser can be attributed to the increased pulse energy and reduced intra-cavity net dispersion. Moreover, the integrated RIN will further decrease as the maximum 3-dB bandwidth extends. In our experiment, the detected minimum integrated rms RIN is below 0.003% (from 100 Hz to 100 kHz). Our experimental results find that the absolute spectral width is not a necessary key condition for obtaining low RIN mode-locked laser, whereas it may help understand and design versatile low-noise ultrafast laser sources.

5.
Opt Lett ; 48(11): 2965-2968, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37262255

RESUMO

We propose and demonstrate the fabrication of an all-fiber mode converter enabling simultaneous generation of multiple high-order core modes, which is realized by inscribing a helical long-period grating (HLPG) in a few-mode fiber (FMF) using a femtosecond laser. Helical refractive index modulation is introduced by continuously irradiating the core region with a highly focused femtosecond laser, while the fiber moves in a spiral path through a three-dimensional translation stage. Mode conversion from the LP01 mode to high-order core modes, including LP11, LP21, LP31, LP02, LP12, and LP41 modes, is achieved by controlling the inscription pitch of the grating. Moreover, first-, second-, third-, and fourth-order orbital angular momentum (OAM) modes can be directly generated using the HLPGs, and multiple OAM modes of different topological charges can be simultaneously excited using a single high diffraction order HLPG. This approach offers a new option for implementing with high-integration high-order mode converters or OAM mode generators.

6.
Opt Lett ; 48(10): 2676-2679, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37186738

RESUMO

Mode-locked lasers with ultra-narrow spectral widths and durations of hundreds of picoseconds can be versatile light sources for a variety of newly emergent applications. However, less attention seems to be given to mode-locked lasers that generate narrow spectral bandwidths. We demonstrate a passively mode-locked erbium-doped fiber laser (EDFL) system that relies on a standard fiber Bragg grating (FBG) and the nonlinear polarization rotation (NPR) effect. This laser achieves the longest reported pulse width (to the best of our knowledge) of 143 ps based on NPR and an ultra-narrow spectral bandwidth of 0.017 nm (2.13 GHz) under Fourier transform-limited conditions. The average output power is 2.8 mW, and the single-pulse energy is 0.19 nJ at a pump power of 360 mW.

7.
Opt Lett ; 48(9): 2461-2464, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37126298

RESUMO

We demonstrate a high-sensitivity fiber-optic magnetic field sensor, which consists of a cladding-etched long-period fiber grating (LPFG) near the dispersion turning point (DTP) integrated with a magnetic fluid (MF). By reducing the cladding diameter of the LPFG, the fundamental mode is coupled to the lowest order cladding mode (LP0,2) near the DTP, which has a much higher surrounding refractive index sensitivity. Thanks to the excellent magneto-optical characteristics of the MF, the proposed sensor can achieve a magnetic field intensity sensitivity of 44.69 nm/mT in the range of 3-7.4 mT. The minimum magnetic field intensity that can be detected is 0.45 µT due to the 0.02-nm wavelength resolution of the optical spectrum analyzer. The proposed etched DTP-LPFG-based sensor with ultrahigh magnetic field sensitivity could have potential applications in magnetic fields and electrical systems.

8.
Opt Express ; 31(5): 8998-9006, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36860002

RESUMO

Bidirectional wavelength-tunable mode-locked fiber lasers have demands for many applications. In our experiment, two frequency combs from a single bidirectional carbon nanotube mode-locked erbium-doped fiber laser are obtained. Continuous wavelength tuning is demonstrated in the bidirectional ultrafast erbium-doped fiber laser for the first time. We utilized the microfiber assisted differential loss-control effect on both directions to tune operation wavelength and it presents different wavelength tuning performances in two directions. Correspondingly, the repetition rate difference can be tuned from 98.6 Hz to 32 Hz by applying strain on microfiber within 23 µm stretching length. In addition, a minor repetition rate difference variation of 4.5 Hz is achieved. Such technique may provide possibility to expand wavelength range of dual-comb spectroscopy and broad its application fields.

9.
Appl Opt ; 61(17): 5172-5178, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-36256199

RESUMO

A wavelength-tunable noise-like pulse (NLP) erbium-doped fiber laser incorporating PbS quantum dot (QD) polystyrene (PS) composite film as a saturable absorber (SA) is experimentally demonstrated. The wavelength tuning is implemented via a Lyot filter consisting of a segment of polarization-maintaining fiber (PMF) and a 45° tilted fiber grating. By adjusting the polarization state of the ring cavity, the laser can deliver NLP with a continuous wavelength-tunable range from 1550.21 to 1560.64 nm. During continuous wavelength tuning, the output power varies between a range of 30.88-48.8 mW. Worthwhile noting is that the output power of 48.8 mW is the reported highest output power for wavelength-tunable NLP operation in an erbium-doped fiber laser using composite film as a saturable absorber.

10.
Opt Lett ; 47(15): 3848-3851, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35913330

RESUMO

We report a narrow bandwidth spatiotemporal mode-locked (STML) ytterbium-doped fiber laser, based on a homemade carbon nanotube/polyvinyl alcohol composite film and the multimode interference filtering effect. The wavelength-tunable narrow bandwidth STML operations combined with different pulse states are achieved, including single pulse, multiple pulses, and harmonics. The 3-dB bandwidth at the single-pulse state is 103 pm, while at the harmonic state, it is as narrow as 26 pm. To give an insight into the generation of the narrow bandwidth STML pulses, numerical simulations are performed. Such a laser has a wide range of potential applications in fields of optical communication and optical measurement, as well as provides a favorable platform for studying the evolution dynamics of multimode solitons.

11.
Opt Lett ; 47(13): 3207-3210, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35776586

RESUMO

We propose and demonstrate the inscription of parallel long-period gratings (LPGs) in a few-mode fiber (FMF) using femtosecond lasers. Mode conversion from the fundamental (LP01) mode to high-order core modes, including LP11, LP21, LP31, LP02, and LP12, is achieved by controlling the inscription period of the gratings. Taking advantage of the highly focused femtosecond laser, LPGs with different off-axis offsets were fabricated, and the resonance wavelength and the inscription efficiency of the gratings versus the offset were investigated. Based on the off-axis writing technique and using the femtosecond laser source, we wrote parallel LPGs that contain multi-gratings in a single FMF and achieved a multi-channel core mode converter in a single FMF with flexibility in terms of the resonant wavelength and mode conversion among different modes. This approach offers a new, to the best of our knowledge, option for implementation with high integration, and a multi-channel mode converter, which could find potential applications in FMF multi-wavelength laser systems, and wavelength/mode division multiplex communication systems. Furthermore, these microstructured LPGs integrated into an optical fiber can be used as a multifunctional sensor.

12.
Opt Express ; 29(22): 34892-34899, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34808938

RESUMO

We demonstrate an L-band all-fibre erbium-doped laser mode locked by nonlinear polarisation rotation and working in the stretched-pulse regime. The use of a single segment of gain fibre with appropriate length and dispersion and a Brewster fibre grating optimised for the L band as an in-fibre polariser enables the generation of pulses at 1.59-µm central wavelength, which can be linearly compressed to 64-fs duration. Numerical simulations of the laser model support our experimental findings. Our laser design gives a route towards low-cost and low-complexity fibre-integrated laser sources for applications requiring L-band ultrashort pulses.

13.
Opt Lett ; 46(22): 5683-5686, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34780436

RESUMO

We report the experimental observation of the transformation process from a stationary soliton to a pulsating soliton in a mode-locked fiber laser. The detailed soliton dynamics, including soliton parameter changings and sideband variation in the transition, are analyzed by the dispersive Fourier transformation technique. This Letter unveils the great enhancement of intracavity periodic perturbations resulting from the slight increase of soliton intensity induced soliton modulation instability, leading to the occurrence of parametric sidebands and multi-periodic pulsing instability. Our experimental results can shed some light on the intrinsic mechanism of soliton pulsation, as well as contribute to the study of soliton stability and laser dynamics.

14.
Opt Express ; 29(17): 26332-26339, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34615070

RESUMO

We demonstrate an L-band wavelength-tunable passively mode-locked fiber laser using a single long-period fiber grating (LPFG) as a narrow-band optical attenuator (NBOA). Through bending the LPFG, the central wavelength can be continuously tuned from 1582.02 to 1597.29 nm, while the output power only varies from 1.465 to 1.057 mW, approximately a rate of 22 µW/nm variation. This is the first time that LPFG is functioned as a NBOA in mode-locked fiber lasers, showing the great advantage of less impact on output power variation reduction. Besides, the total cavity length is 5.08 m, which is the shortest length yet reported in wavelength-tunable mode-locked fiber lasers. The wavelength tuning could also be realized at harmonic mode locking with tuning range of 14.69 nm under 5th harmonic.

15.
Sensors (Basel) ; 21(17)2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34502866

RESUMO

A wavelength-tunable high repetition rate (HRR) erbium-doped fiber laser in L-band based on dissipative four-wave mixing (DFWM) mechanism is demonstrated. The cavity can generate a single-soliton train and bound-soliton train with a fixed repetition rate of ~126 GHz, which is determined by the free spectral range of the intra-cavity Lyot filter. A wide wavelength-tuning operation can also be obtained by rotating the polarization controllers. The wavelength-tuning ranges of the HRR single-soliton state and HRR bound-soliton state are ~38.3 nm and ~22.6 nm, respectively. This laser provides useful references for the area of a wavelength-tunable fiber laser with high repetition rate. The laser may also find useful applications in high-speed communication, sensing, etc.

16.
Opt Lett ; 46(11): 2638-2641, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34061076

RESUMO

We examine the implication of intracavity nonlinearity for harmonic mode locking (HML) by exploiting highly nonlinear fiber in a carbon nanotube film mode-locked Er-doped fiber laser. It is found that the reasonably large nonlinearity is of benefit to increase the extent of harmonic order while the excessive nonlinearity leads to some peculiar multi-pulse patterns such as noise-like pulse and soliton rain. Via appropriate nonlinearity management, nearly 4 GHz repetition rate pulses at the 91st harmonic with 936 fs pulse duration are delivered under the pump power of 280 mW. The pulse stability is evidenced by the super-mode suppression ratio of 35.6 dB. To the best of our knowledge, it is the highest repetition rate yet reported for a passively HML fiber laser based on a film-type physical saturable absorber. Furthermore, the laser exhibits steep pumping efficiency slope of ${\gt}{19}\;{\rm MHz/mW}$, which is also a record among all of the passively HML fiber lasers.

17.
Appl Opt ; 60(11): 3044-3048, 2021 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-33983198

RESUMO

Yttrium aluminum garnet (YAG) doped with Ce was synthesized via the co-precipitation method with NH4HCO3 as the precipitant. The spectroscopic properties and the effects of the Ce doping concentration and sintering atmosphere on the crystal phase were investigated. The dosimeter of YAG:Ce phosphor material was prepared to study the radioluminescence (RL) characteristics of a clinical linear accelerator. A satisfying linear relationship between the radiation dose and RL signal was obtained, which provided a reference for the YAG:Ce phosphor material used in radiotherapy and real-time remote radiation detection.


Assuntos
Alumínio/química , Cério/química , Corantes Fluorescentes/química , Ítrio/química , Relação Dose-Resposta à Radiação , Humanos , Radioterapia
18.
Appl Opt ; 59(34): 10688-10694, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33361887

RESUMO

We demonstrate high-order mode conversion in a few-mode fiber (FMF) via CO2 laser inscribed long-period fiber gratings (LPFGs) at both the 1.55 µm and 2 µm wavebands. At the 1.55 µm waveband, five high-order core modes (the LP11, LP21, LP02, LP31, and LP12 modes) can be coupled from the LP01 mode with high efficiency by the FMF-LPFGs. The orbital angular momentum beams with different topological charges (±1,±2,±3) are experimentally generated by adjusting the polarization controllers. At the 2 µm waveband, three high-order modes (the LP11, LP21, and LP02 mode) can be coupled by the FMF-LPFGs with different grating periods. The proposed LPFG-based mode converters could have a potential prospects in mode-division multiplexing and multiwindow broadband optical communication applications.

19.
Opt Express ; 28(21): 31882-31892, 2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-33115152

RESUMO

We investigated theoretically and experimentally the cascaded long-period fiber gratings (c-LPFGs) in a few-mode fiber (FMF) for the generation of LP11 core mode in a broad wavelength range. The dependence of the transmission spectra of the c-LPFGs on the spacing between the gratings, and grating periods are studied in detail. The c-LPFGs experimentally generate LP11 core mode in a 10-dB bandwidth of 193.6 nm in 1.55 µm waveband and 447.5 nm in 2 µm waveband, respectively. The first-order orbital angular momentum mode can be converted by the c-LPFGs with the same broadband wavelength range. The 10-dB bandwidth and corresponding wavelength range for mode conversion can be adjusted by changing the grating spacing and grating periods.

20.
Appl Opt ; 59(22): 6724-6728, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32749377

RESUMO

We experimentally demonstrate a harmonic-order controllable L-band Er-doped passively mode-locked fiber laser based on nonlinear polarization rotation (NPR). Distinct from all previous reports, we find that the intracavity birefringence is able to control the harmonic order of a passively mode-locked fiber laser. Experimentally, under a constant pump power of 704 mW, the harmonic order can be tuned from 113th to 39th monotonically by adjusting the polarization controller orientation only. The corresponding repetition rate changes from 2.21 to 0.77 GHz simultaneously. Remarkably, the super-mode suppression ratio of each harmonic order we observed is higher than 29 dB with a maximum of 36.5 dB. Simulated transmission spectra of NPR prove that the changed transmission plays an important role in controlling the harmonic order.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...